Performance and Structure of Thin Film Composite Reverse Osmosis Membranes Prepared by Interfacial Polymerization in the Presence of Acid Acceptor

Authors

  • Akkihebbal Suresh Chemical Engineering Department, Indian Institute of Technology (IIT) Bombay, Mumbai, India
  • Jaydevsinh Gohil ADVANCED POLYMER DESIGN AND DEVELOPMENT RESEARCH LABORATORY (APDDRL), BENGALURU
Abstract:

During interfacial polymerization (IP) reaction between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC), a by-product, i.e. hydrochloric acid can produce. This produced acid diffuses back in aqueous phase and protonates MPDA and reduces its reactivity that results in lowering of polymer yield and performance of membrane. Further, for getting consistency in reverse osmosis membranes formation, different acid acceptors (AAs) can investigate in the IP to form polyamide-made barrier layer formation. The main objective was to scavenge hydrochloric acid produced during IP and to fabricate membrane having high flux and salt rejection ability. AAs (of varying concentrations) tested were triethylamine-camphorsulfonic acid (TEACSA), triphenyl phosphate (TPP), sodium hydroxide (SH) and trisoduim phosphate (TSP) for studying structure and performance of membranes. The membrane samples were then characterized using surface proflometer, scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy, atomic force microscopy (AFM), and contact angle goniometer. Results indicated that the addition of organic AA improves water permeability of the membranes without sacrifcing salt rejection. The optimum membranes were prepared with AA concentrations of 3.4, 0.15, 0.02 and 0.19 wt.% for TEACSA, TPP, SH and TSP respectively. Membranes produced in presence of AA had higher surface area difference, hydrophilicity and water flux. Additionally, compare to inorganic AAs, the use of organic AA produced membrane with thicker polyamide layer and higher cross-link density. These induced changes in the physicochemical features of the prepared membranes also signifed the role of the AA in scavenging the hydrochloric acid to forestall the formation of amine salts during IP for polyamide nanocomposite membrane formation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Simulation of thin film membranes formed by interfacial polymerization.

Interfacial polymerization is widely used today for the production of ultrathin films for encapsulation, chemical separations, and desalination. Polyamide films, in particular, are employed in manufacturing of reverse osmosis and nanofiltration membranes. While these materials show excellent salt rejection, they have rather low water permeability, both properties that apparently stem from the r...

full text

determination of olanzapine and thiourea using electrodes modified by dna and film of copper-cobalt hexacyanoferrate & investigation of electro-oxidation of some catechol derivatives in the presence of 4-phenylsemicarbazid

چکیده هدف از این کار بررسی الکترواکسیداسیون کتکول و مشتقات آن در حضور 4-فنیل سمی کاربامازید بوده است اکسیداسیون کتکولها ترکیبات نا پایدار کینونها را تولید می کنند که این ترکیبات می تواند در واکنش مایکل بعنوان پذیرنده نوکلئوفیل عمل نمایند. در ادامه اکسایش کتکولهای (a-c1) را درحضور 4-فنیل سمی کاربامازید در محلول آب/استونیتریل (90/10)بوسیله ولتامتری چرخه ای و کولن متری در پتانسیل ثابت مورد بررسی ...

15 صفحه اول

Thin Film Heterogeneous Ion Exchange Membranes Prepared by Interfacial Polymerization of PAA-co-Iron-Nickel Oxide Nanoparticles on Polyvinylchloride Based Substrate

In this research thin film heterogeneous cation exchange membrane was prepared by interfacial polymerization of polyacrylic acid-co-iron nickel oxide nanoparticle son PVC based substrate. Spectra analysis confirmed graft polymerization conclusively. The SEM images showed that polymerized layer covers the membranes by simple gel network entanglement. Results exhibited that membrane water content...

full text

High performance thin-film composite forward osmosis membrane.

Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forwa...

full text

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  3- 10

publication date 2019-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023